

AQA Physics GCSE 4.3.2 - Internal Energy and Energy Transfers

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

DOfS PMTEducation

What is the internal energy of a substance?

What is the internal energy of a substance?

 The energy stored by the particles
 The sum of the total kinetic and potential energies that make up the system

How does heating affect the energy of a substance?

How does heating affect the energy of a substance?

Heating transfers energy to the substance

• It increases the energy of the particles that make up the substance

What two things can heating a substance do?

What two things can heating a substance do?

Raise its temperature Change the state of the substance

What three factors determine the temperature change of a system?

What three factors determine the temperature change of a system?

- 1. Mass of substance being heated
 - 2. Type of material (Specific heat capacity)
- 3. Energy inputted into the system

State the equation used to calculate the temperature change when a substance is heated. Give appropriate units.

State the equation used to calculate the temperature change when a substance is heated. Give appropriate units.

ΔE = m c Δθ Energy (J), Mass (kg), Specific Heat Capacity (J/kg/°C), Temperature (°C)

Define specific heat capacity.

Define specific heat capacity.

The amount of energy needed to increase the temperature of 1kg of a substance by 1°C.

DOG PMTEducation

Describe how the internal energy and temperature of a substance changes when a change of state occurs.

Describe how the internal energy and temperature of a substance changes when a change of state occurs.

• The internal energy of the substance will be increased or decreased

• The temperature of the substance will remain constant

Define specific latent heat.

Define specific latent heat.

The amount of energy needed to change the state of 1kg of a substance with no change in temperature.

State the equation for the energy required to change state. Give appropriate units.

State the equation for the energy required to change state. Give appropriate units.

Energy to change state = mass x specific latent heat
Energy (J), Mass (kg), Specific latent heat (J/kg)

DOG PMTEducation

www.pmt.education

What is the specific latent heat of fusion?

What is the specific latent heat of fusion?

The energy required to change 1kg of a substance from solid state to liquid state without a change in temperature.

PMTEducation

What is the specific latent heat of vaporisation?

What is the specific latent heat of vaporisation?

The energy required to change 1kg of a substance from liquid state to gas state (vapour) without a change in temperature.

